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1. Introduction

Buoyant convection in a side-heated square cavity of

a Boussinesq ¯uid has served as a benchmark con®gur-

ation [1]. The two vertical sidewalls are maintained at

di�erent constant temperatures Th and Tc, respectively,

and the horizontal walls are insulated (see Fig. 1).

Concern is with the case of large Rayleigh number Ra

(0g0aDTL
3/nk ) where, g0 denotes gravity; a, the coe�-

cient of thermometric expansion; DT, the horizontal

temperature di�erence (0ThÿTc); L, the height of the

square cavity; n, the kinematic viscosity; and k, the

thermal di�usivity of the ¯uid.

As observed in [2±4], buoyant convection in an

enclosure with time-periodic boundary conditions has

emerged to be a topic of increasing interest of late.

One fundamental issue is the existence of resonance,

which was ®rst pointed out by Lage and Bejan [5] and

Lage et al. [6±9]. They considered the case when the

heat ¯ux at one vertical sidewall varies with time in a

square wave. Resonance is manifested by the intensi®-

cation of convective activities in the interior core. It

was shown that, at the proper resonance frequency,

the amplitude of Nusselt number ¯uctuation in the

central region of the cavity is maximized. [10±12]

asserted that resonance is expected to occur when the

time-periodic external condition excites the eigenfre-

quencies of the system. For a di�erentially heated cav-

ity, in which the temperature at one vertical wall varies

periodically, [10±12] demonstrated that the system

eigenfrequencies are characterized by the modes of in-

ternal gravity oscillations, which are supported by the

prevailing strati®cation.

The present account probes into the principal fea-

tures of resonance in a side-heated square cavity under

a time-periodic gravity vector. It is recalled that, in the

buoyant ¯ow models of [5,10], the imposed time-

periodicity was given to the boundary condition at the

vertical sidewall. In contrast, in the present set-up, the

entire apparatus is subject to a time-varying gravita-

tional environment. Examples can be found in the

thermo-¯uid systems under severe mechanical vi-

brations. The problem is of immediate concern to the

designers of space vehicles, which operate in micro-

gravity with g-jitters.

Fu and Shieh [13] performed a numerical study of

thermal convection, which was driven simultaneously

by gravity and vertical vibration of the container. A

relatively small Rayleigh number (Ra = 104) was con-

sidered, and the changes in ¯ow patterns and heat

transport rates with varying vibration frequencies were

illustrated. The formulation of [13] was such that the

vertical vibrational acceleration was ÿAo 2 sin ot;
therefore, the amplitude of acceleration (ÿAo 2) was a

function of the frequency o. This implies that the sep-
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arate e�ects of amplitude and of vibration frequency
cannot be readily delineated.

The aim of the present brief communication is to
provide an additional description of the basic mechan-
ism of resonance in seemingly di�erent buoyant sys-

tems at large Ra. The common thread is the
ascertainment that resonance takes place when the fre-
quency of external ¯uctuations matches the eigenfre-

quencies of the system, which are identi®ed to be the
modes of internal gravity oscillations. In this note,
independent e�ects of amplitudes and frequency of os-

cillations on the resonance characteristics are studied.

2. Model

The vertically downward constant gravity is g0, and
two cases are considered for the ¯uctuating parts of

acceleration: (case 1), in the vertical direction gy=eyg0 -
sin( ft ); (case 2), in the horizontal direction gx=exg0 -
sin( ft ).

The governing time-dependent Navier±Stokes
equations, in properly nondimensionalized form, read
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in which nondimensional quantities are de®ned as

t � t�RaPr�1=2 k
L 2

, �U, V � � �u, v��RaPr�ÿ1=2 L

k
,

�X, Y � � �x, y�
L

, y � Tÿ Tc

Th ÿ Tc

,

P � � p� rg0y�L 2

rk 2RaPr
:

In the above equations, (U, V ) are velocity
components in the (X, Y ) directions, and the Prandtl
number Pr 0 n/k. Note that the time is scaled by

using the reciprocal of the Brunt±VaÈ saÈ llaÈ frequency, N
based on the horizontal temperature contrast, i.e. N0
(RaPr )1/2k/L. The appropriateness of this scaling

can be justi®ed from the fact that N characterizes the
strati®cation of basic-state ¯ow (see [10]).
The associated boundary conditions are

U � V � @y
@Y
� 0, at Y � 0, 1;

U � V � y � 0, at X � 0;

U � V � 0, y � 1, at X � 1:

In Eqs. (1)±(4), case 1 refers to ex=0; and for case 2,

ey=0. Also, note that the nondimensional ¯uctuating
frequency o0f/N.
The above problem was solved numerically by utiliz-

ing the well-established SIMPLER algorithm [14]. A
(61 � 61) mesh network was deployed with the im-
plementation of grid stretchings. The time step was

typically Dt=2p/(1024o ). The numerical method-
ologies and computational details have been amply
documented, and the sensitivity and convergence tests
were conducted in su�cient detail. As the compu-

tational procedures, no new claims are made here; the
calculations were carried out almost in a routine man-
ner. Comparisons of the present results with the avail-

able data were made, and the present results were
found to be highly consistent with the previous data.

3. Results and discussion

The solutions of the basic steady-state (ey=ex=0)
are denoted by subscript ss. For convenience, a physi-Fig. 1. Schematic diagram of ¯ow con®guration.
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cal variable f, the departure from the basic-state is
expressed by G(f ), i.e.

G�f� � fÿ fss

fss

,

and the amplitude of ¯uctuation of f is shown by

A(f ), i.e.

A�f� � Max�f�t�� ÿMin�f�t��
2

, t0 RtRt0 � 2p
o
:

Also, at the vertical line X=X, the Nusselt number is

de®ned as

Nu�t�X�X �
�1
0

�
Uy�RaPr�1=2 ÿ @y

@X

�
X�X

dY:

A comprehensive series of numerical solutions were
acquired for Ra= 107 and Pr= 0.7. The amplitude of
the external excitation was set to be small, ex or ey R
0.03. A compilation of the computed results is dis-
played in Fig. 2 in the form of A(Nu )/e at the center-
line X= 0.5 versus o. Obviously, this plot exhibits the

normalized amplitude of ¯uctuating heat transport in

the interior, A(Nu )/e, for a given external excitation

frequency o. It is evident that A(Nu ) peaks at a par-

ticular frequency or 3 0.66 for both the cases 1 and 2.

This is indicative of resonance, as observed by [5,10]

for the cases of time-periodic thermal boundary con-

dition imposed at the vertical sidewall. The present

results are in close agreement with these preceding ob-

servations both in the value of or and in the general

shape of A(Nu )/e±o curve. Furthermore, for the

present range of small-amplitude external excitations,

ex or ey<<1, A(Nu )/e±o curves are almost independent

of ex or ey. This suggests that, in the linear range ex or

ey<<1, A(Nu ) is proportional to the strength of exci-

tation.

In an e�ort to explain the mechanism of resonance,

[12] argued that the modes of internal gravity oscil-

lation in the interior characterize the eigenfrequencies

of the present buoyant ¯ow system. In accordance

with the developments of Paolucci and Chenoweth

[15], the fundamental mode of these oscillations is

given as oi � S=
���
2
p
: In the above equation, S indicates

the overall vertical strati®cation in the interior, i.e. S

3 @y/@y. A curve-®tting was made to the computed

temperature ®eld of the basic-state ¯ow, and these

exercises yield oi 3 0.68, which is in satisfactory agree-

ment with the computed resonance frequency or 3
0.66. These again reinforce the prior ascertainment

that resonance occurs when the modes of internal

gravity oscillations are excited.

In Fig. 2, it is worth pointing out that the numerical

value of A(Nu )/e for case 2 is much larger than for

case 1. This implies that the magni®cation of ampli-

tude of heat transfer is far more e�ective when the os-

cillation is made in the horizontal, than in the vertical,

direction. As emphasized in [10], when the system is in

resonance, the interior isotherms undergo a periodic

tilting. The horizontal oscillation therefore is more

e�ective in producing the tilting of isotherms, and the

numerical results are consistent with this line of physi-

cal reasoning.

Time histories of ¯ow and thermal ®elds under res-

onance condition over a cycle are exempli®ed in Fig. 3.

For the case of vertical oscillation (see Fig. 3A), the

changes in e�ective gravity are quantitative in nature.

Consequently, when ey is very small, the resulting vari-

ations in the ¯ow patterns are not prominent. How-

ever, in the case of horizontal oscillation (see Fig. 3B),

the direction of e�ective gravity deviates from the ver-

tical direction, and the resulting e�ect on the interior is

more direct and pronounced. It is notable in Fig. 3B

that the general directions of isotherms in the cavity

are tilting sideways over a cycle, which causes qualitat-

ive changes in the global ¯ow pattern.

Fig. 2. Plots of A(Nu )/e vs. o, (a) case 1, ex=0, ey=0.01; (b)

case 2, ex=0.01, ey=0.
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4. Concluding remarks

The computed results suggest that resonance takes

place when the frequency of oscillations matches the

basic mode of internal gravity oscillations. At the res-

onance frequency, A(Nu ) is maximized, which suggests

intensi®cation of convective activities in the interior.

The oscillation in the vertical direction brings forth

mostly quantitative changes, but the changes are far

more pronounced and qualitative when the oscillation
is in the horizontal direction.
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Fig. 3. Flow pattern (in the left box) and temperature ®elds (in the right box) are shown in each pair of the boxes, (A) case 1,

ex=0, ey=0.03, o=0.66; (B) case 2, ex=0.03, ey=0, o=0.66. Time instants are (i) the start of the cycle, (ii) 1/4 cycle, (iii) 1/2 cycle

and (iv) 3/4 cycle.
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